viernes, 19 de marzo de 2010

LA ESPIRAL LOGARITMICA



Si tomamos un rectángulo áureo ABCD y le sustraemos el cuadrado AEFD cuyo lado es el lado menor AD del rectángulo, resulta que el rectángulo EBCF es áureo. Si después a éste le quitamos el cuadrado EBGH, el rectángulo resultante HGCF también es áureo. Este proceso se puede reproducir indefinidamente, obteniéndose una sucesión de rectángulos áureos encajados que convergen hacia el vértice O de una espiral logarítmica.


Esta curva ha cautivado, por su belleza y propiedades, la atención de matemáticos, artistas y naturalistas. Se le llama también espiral equiangular (el ángulo de corte del radio vector con la curva es constante) o espiral geométrica (el radio vector crece en progresión geométrica mientras el ángulo polar decrece en progresión aritmética). J. Bernoulli, fascinado por sus encantos, la llamó spira mirabilis, rogando que fuera grabada en su tumba.
La espiral logarítmica vinculada a los rectángulos áureos gobierna el crecimiento armónico de muchas formas vegetales (flores y frutos) y animales (conchas de moluscos), aquellas en las que la forma se mantiene invariante. El ejemplo más visualmente representativo es la concha del nautilus.


Espiral logaritmica

No hay comentarios:

Publicar un comentario en la entrada